the primes indicating that k' is only known approximately because of the former assumptions.

In the case of carbonic acid, extrapolation of $(E_1 - E_p)$ **F**/2.3 *RT* as a function of $\sqrt{\mu}$ leads easily to log K^m_p/K^{m_1} and a double extrapolation first to zero weak acid concentrations at a given μ , and then to zero KCl or NaCl concentration, is not required.

It can be shown (7) that $\Delta V_1 = 1.016 \ge (E_1 - E_{1000})$ if ΔV_1 is expressed in cm³ mole⁻¹, *E* in millivolts, *p* in kg. cm⁻². E_{1000} is measured on the tangent of $E_1 - E_p$ = f(p) drawn through p = 1 atm. For carbonic acid, $E_1 - E_p = \Delta E_p$ is a linear function of *p* up to 1000 kg. cm⁻², so that E_{1000} corresponds to the emf effectively measured at 1000 kg. cm⁻².

Concentrations (m) and activity coefficients (γ) are given on the molal scale (mole per kg of pure solvent) in Eq. [1]-[4].

If the concentrations are expressed on the molar scale (mole per liter solution, c) the following classical equations ([5]-[10]) can be used to relate c, m, the corresponding activity coefficients, y and γ , the density (d) of the solution and of pure water (d_o) , M_i the molecular weight of solute *i*. the dissociation constants and ionization functions K^c , k^c , K^m , k^m

$$m_i = c_i / (d - \Sigma c_i M_i / 1000)$$
 [5]

$$c_i = m_i d / (1 + \Sigma m_i M_i / 1000)$$
 [5']

$$\gamma = \eta [(d - \Sigma c_i M_i / 1000) / d_2]$$
 [6]

$$m_{\gamma}d_{o} = cy$$
 [7]

$$K^m = K^c/d_o; \ k^m = k^c (1 + \Sigma m_i M_i / 1000) / d$$
 [8]

 $\log K^{m}_{p}/K^{m}_{1} = \log K^{c}_{p}/K^{c}_{1} - \log d_{op}/d_{o1}$ [9]

$$\log k^{m}_{p}/k^{m}_{1} = \log k^{c}_{p}/k^{c}_{1} - \log d_{p}/d_{1}$$
 [9']

Combining [7] and [2] gives

$$\frac{(m\gamma)^{\operatorname{ref}_{1,p}}}{(m\gamma)^{\operatorname{x}_{1,p}}} = \frac{(cy)^{\operatorname{ref}_{1,p}}}{(cy)^{\operatorname{x}_{1,p}}}$$
[10]

If the activity coefficients can be made to cancel in both ref and x compartments of the glass electrode, $(E_1 - E_p)\mathbf{F}/2.3 \text{ RT}$ will be equal to $\log k'^m_p/k'^m_1$ and extrapolate to $\log K^m_p/K^m_1$ as a function of μ (Eq. [4]) whatever the concentration scale used.

In aqueous solutions $d_p/d_1 = d_{op}/d_{o1} = 1.04$ at 1000 atm, log $d_{1000}/d_1 = 0.017$, and it is thus easy to use $(E_1 - E_{1000})$ to calculate the ratios of the dissociation constants and ionization functions either on the c or the *m* scale.

When the absolute values of k'^{m_1} , k'^{c_1} are required, Eq. [5], [5'], and [6] can be used to calculate either ionization function from the results obtained on the c or the *m* scale, respectively.

In practice, if the highest precision is not required, $c \simeq m$ at 0.1M. At concentrations where the correction to calculate m from c is more important, the densities in the x and ref compartments of the glass electrode are nearly equal when the buffer concentration is small compared with the NaCl or KCl concentrations, and only $m_{\rm H}$ + needs be computed in the reference solution, since $m_{\rm Cl}$ - $^{\rm x} = m_{\rm Cl}$ - $^{\rm ref}$.

In the present paper, concentrations referring to the gross composition of the solutions are indicated on the molar scale, and to simplify the symbol M referring to molarity is omitted (0.5 NaCl means 0.5M NaCl). The hydrogen ion stoichiometric concentration [H⁺] is represented by $pcH = -\log [H^+]$ on the *c*-scale and pmH on the *m*-scale, the hydrogen ion activity a_{H^+} by $paH = -\log a_{H^+}$ and if the distinction between pcH, pmH, paH is irrelevant, the symbol pH is used; subscripts p, 1, 1000 indicate pressure p, 1 atm, 1000 kg. cm⁻² (ex. : pmH_1 , pmH_{1000}); $\Delta E_{1000} = E_1 - E_{1000}$ in millivolts (mv).

Experimental

The equipment described in 1962 (7) is used. It is important in the experiments involving equilibration with either pure CO_2 or mixtures of CO_2 and nitrogen to saturate the silicone oil used in the glass electrode cell and to fill the cell with pipettes containing a controlled gas phase (3).

The glass electrode is made from Corning 015 glass, when no sodium error is to be expected. A commercial electrode, E.I.L.¹ n° 18331 unsensitive toward Na⁺ at alkaline pH is used whenever necessary.

Corrections for asymmetry potential shift with pressure is made as described earlier (3, 4, 7). When both cell compartments contain the same solution ΔE_{1000} is generally between 0 and ± 1.0 mv. Higher values indicate defective Ag-AgCl electrodes.

Highest grade reagents (Merck) and air-free bidistilled water (Pyrex) are used.

Results

First ionization function and first dissociation constant of carbonic acid in bicarbonate buffer in presence of NaCl or KCl, at p = 1 atm and p = 1000 kg. cm^{-2} .—Figure 1 shows ΔE_{1000} in mv as a function of $\sqrt{\mu}$ for various bicarbonate buffers at different buffer ratios, in presence of NaCl or KCl. Extrapolation to zero ionic strength gives 25.0 mv corresponding to $-\Delta V_{1^0} = 25.4$ cm³ mole⁻¹, in agreement with our previous experiments (4).

Figure 2 gives the ionization function $pk'^{c}_{(1)} = -\log k'^{c}_{(1)}$ and $pK'^{c}_{(1)} = -\log K'^{c}_{(1)} = pk'^{c}_{(1)} + \frac{1.01\sqrt{\mu}}{1+\sqrt{\mu}}$

as a function of μ at p = 1 atm and $pK^{c}_{(1)p} + \log d_p/d_1$ at p = 1000 kg. cm⁻² (log $d_p/d_1 = 0.017$). The absolute values of $pK^{c}_{(1)}$ (6.38) and $pk'^{c}_{(1)}$ are

The absolute values of $pK^{c}_{(1)}$ (6.38) and $pK'^{c}_{(1)}$ are in good agreement with the data of Harned and Davis (8) and of Harned and Bonner (9) ($pK^{m}_{(1)} = 6.3809$ at 20° and 6.3519 at 25°C).

The concentration ratios $[\text{HCO}_3^-]/[\text{CO}_2]$ are computed from the equations of these authors and the same extrapolation function is found to fit our results and theirs. The 2 log $(y_{\text{HCI}})^{\text{ref}}/(y_{\text{HCI}})^{\text{x}}$ term in Eq. [1] (c scale) is calculated from the values of γ_{HCI} in NaCl and KCl taken from Harned and Owen (10). It is assumed that γ_{HCI} in the x compartment is only affected by the ionic strength, and the ratio of the activity coefficients is also supposed to be valid on the molar scale. At $\mu \ge 0.5$, γ_{HCI} practically cancels in both compartments.

At $\mu = 0.75$, $pk'^{m}{}_{(1)} = pk'^{c}{}_{(1)} - 0.007 = 5.995$. The correction is -0.005, -0.0057, -0.0065, -0.0073,

¹ Electronic Instruments Limited, Richmond, Surrey, England.

Fig. 1. Glass electrode emf shifts at 22°C produced by pressure (1000 kg.cm⁻²), in bicarbonate buffers, at different buffer ratios, as a function of $\sqrt{\mu}$, in NaCl, KCl, in presence of Mg⁺⁺, Ca⁺⁺, SO₄⁼ ions, and in sea water.

J. Electrochem. Soc.: ELECTROCHEMICAL SCIENCE

April 1967

332

Fig. 2. First ionization function $(k'c_{(1)})$ of carbonic acid and as a function of μ at atm pressure and 1000 kg.cm⁻² in NaCl and KCl at 22°C. Effect of MgSO₄ + MgCl₂.

-0.0081, -0.009 at μ 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, respectively (calculated from the density of NaCl solutions), and at $\mu = 0$, it is equal to -0.001.

Second ionization function and second ionization constant of carbonic acid in carbonate buffer in presence of NaCl or KCl, at p = 1 atm and p = 1000kg. cm⁻².—Figure 3 gives ΔE_{1000} in mv, as a function of $\sqrt{\mu}$ for carbonate buffer in presence of NaCl or KCl.

Extrapolation to zero ionic strength gives 25.1 mv or $-\Delta V_1^{\circ} = 25.6$ cm³ mole⁻¹, which is practically the same result obtained in bicarbonate buffers. The value calculated by Owen and Brinkley (1) from density determinations is 27.8 cm³ mole⁻¹.

Figure 4 shows the ionization function $pk'^{c}{}_{(2)}$ as a function of $\sqrt{\mu}$ at p = 1 atm, $pk'^{c}{}_{(2)p} + \log d_p/d_1$ at p = 1000 kg. cm⁻²; the results in 0.5 and 0.8 NaCl do not depend on the buffer ratio and are identical either with NaHCO₃ 0.08 + Na₂CO₃ 0.01 or with NaHCO₃ 0.025 + Na₂CO₃ 0.025. $pK^{c}{}_{(2)} = 10.37$ corresponds to the values published by Harned and Scholes (11) $(pK^{m}{}_{(2)} = 10.377$ at 20°C, 10.329 at 25°C) who extrapolate their data between $\mu = 0.15$ and 0.

At $\mu = 0.75$, $pk'^{m}_{(2)1} = 9.60 - 0.007$ in NaCl.

Effect of buffer ratio on the ionization of carbonic acid at 1000 kg. cm^{-2} in NaCl and KCl solutions.— Figures 1 and 3 show that, at a given buffer ratio, ΔE_{1000} extrapolates linearly to the same value at $\mu = 0$, and that a change in the buffer concentration has the

Fig. 3. Glass electrode emf shifts at 22°C, produced by pressure (1000 kg.cm⁻²) in carbonate buffers, at different buffer ratios, as a function of $\sqrt{\mu_{\nu}}$ in NaCl or KCl, in presence of Mg⁺⁺, Ca⁺⁺, SO₄⁼, and in sea water.

Fig. 4. Second ionization function $(k'^{c}_{(2)})$ of carbonic acid as a function of $\sqrt{\mu}$ at atm pressure and 1000 kg.cm⁻² in NaCl and KCl at 22°C. Sulfate effect of 0.030 MgSO₄ (+0.026 MgCl₂).

same effect as the corresponding μ change produced by an increase of the NaCl or KCl concentration. It is therefore easy to obtain a graphical estimate of ΔE_{1000} at a chosen ionic strength, even from isolated values measured at another ionic strength.

Curves 1 and 1' from Fig. 5 give ΔE_{1000} at $\mu = 0.75$ (ionic strength of sea water at $Cl\%_0 = 20.0$) as a function of pmH_1 , in NaCl and KCl. The emf shifts depend only slightly on the total CO₂ concentration in the range investigated ([HCO₃-] + [CO₃-] between 0.09 and 0.0025; arrows indicate the values at 0.0025 in Fig. 5).

The reason for the difference between the results in NaCl and KCl at $pmH_1 \ge 8.5$ is, we believe to be correlated with the fact that, at 1 atm, the curves giving $pk'_{(2)}$ as a function of $\sqrt{\mu}$ (Fig. 3) demonstrate the greater tendency for carbonate ions to associate with Na than with K. Ion pairs like $Na^+ - CO_3^=$ or Na^+ NaCO3⁻ will dissociate under pressure, and free CO_3 = ions, hitherto masked for the carbonic acid equilibrium, will modify the buffer ratio, so that the pmH shift induced by pressure can be expected to be smaller than in a medium where association is less important or inexistent. We will see that magnesium and calcium ions which have a much larger tendency to form ion pairs with $CO_3^{=}$ than sodium ions also have a much larger lowering effect on the emf changes produced by pressure in carbonate buffers.

Since K^+ or Na⁺ may also form ions pairs with HCO_3^- , a complete analysis of curves 1 and 1' appears to be far from easy and would require the knowledge of $pk'_{(1)(2)}$ and $\Delta pk'_{(1)(2)}/\Delta p$ in absence of any ionic association; the dissociation constants of $NaCO_3^-$ and $NaHCO_3$ would have to be taken into account and also the equilibrium $2HCO_3^- \rightleftharpoons CO_3^- + H_2CO_3$, which is displaced when CO_3^- or HCO_3^- is released in the solution. Besides the salt effect of NaCl or KCl would have to be known.

There is however no difficulty in considering that in the ionization functions $k'_{(1)}$ and $k'_{(2)}$, determined at atmospheric pressure or at 1000 kg. cm⁻², [CO₃=] and [HCO₃-] refer to the total concentration of CO₃= of HCO₃-, ions present either as free ions or forming ion pairs with Na or K.

In the pmH_1 interval 8.5-9.5 the thus defined $pk'_{(2)1000}$ can be measured without ambiguity from curves 1 and 1' of Fig. 5 since ΔE_{1000} is constant. The buffer ratio and the term 2 log γ_{A1}/γ_{Ap} in Eq. [3] are constant, the mean activity coefficient being referred to the total concentrations of free and masked ions. Log $k'^m_{(2)1000}/k'^m_{(2)1}$ is therefore equal to 0.315 ($\Delta E_{1000} = 19.0 \text{ mv}$) and 0.350 ($\Delta E_{1000} = 20.8 \text{ mv}$) in NaCl and KCl, respectively.